Estimating the Economic Impacts of Climate Change on California Agriculture

Richard Howitt, Josué Medellín-Azuara, Duncan MacEwan and Jay Lund

University of California, Davis

Thanks to the **California Energy Commission**'s Public Interest Energy Research for funding; **Tom Hawkins, Farhad Farnam, Ray Hoagland, and Kurt Richter** for providing data, and **Chenquang Lee** for research support.

Overview

- Introduction
- Model Description
- Model Innovations
 - Universal Innovations
 - Climate Change Innovations
- Results
 - Extensive Margin
 - Land Use, Prices, Revenues, Water Use
 - Intensive Margin
 - Water Use per Acre in Region 19
- Extensions
- Conclusions

Introduction

- Value of Agriculture in California
- Land cropping patterns are influenced by
 - Economic factors
 - Geographic conditions
 - Climatic conditions
- Future of California agriculture
 - Interaction among:
 - Technology
 - Resources
 - Market demands

The Statewide Agricultural Production Model (SWAP)

- Farmers are assumed:
 - Rational
 - Aimed to maximize profits
- Three step self-calibrating PMP
- Dairy herd feed is included
- Inputs: water, labor, land, supplies, 2000-05
- Thirteen Crop groups
- Two climate scenarios analyzed 2050
 - Historical
 - Warm-Dry

SWAP Geographical Coverage

Land Use Changes 2100

Technological Change and Crop Demands by 2050

Crop	Yield % Change Technology	Demand % Change Intercept
Alfalfa*	29.1	3.3
Citrus	28.5	3.6
Corn	25.4	5.7
Cotton	29.1	2.1
Field	29.1	3.3
Grains	29.1	7.6
Grapes	23.4	16.4
Orchards	36.4	3.8
Rice	31.9	-4.1
Tomato	40.1	26.9
Truck	25.4	45.5

Climate Change Model Innovations

Water Availability (feedback from CALVIN)

% Change in		
Available Water	Agriculture	Urban
Total	-25.7	-0.5

ClimateInducedYieldChange

Crop Groups	Sacramento	San Joaquin
Alfalfa	4.9	7.5
Citrus	1.77	-18.4
Corn	-2.7	-2.5
Cotton	0.0	-5.5
Field	-1.9	-3.7
Grain	-4.8	-1.4
Orchards	-9.0	-9.0
Pasture	5.0	5.0
Grape	-6.0	-6.0
Rice	0.8	-2.8
Tomato	2.4	1.1
Truck Crops	-11.0	-11.0

Extensive Margin Results: Land Use Changes

- Shift to less water intensive crops
- Production shifts to regions with comparative advantages

Land Use Changes with Climate Change

Extensive Margin Results: Regional Revenue

Revenues reductions across regions

Change in Revenues with Climate Change

Extensive Margin Results: Crop Prices, Production, Revenues

Extensive Margin Results: Regional Water Use

- Reduced water use across regions
 - Warm-dry climate water use from CALVIN allows for water transfers

Intensive Margin Results: Water Use per Acre in CVPM 19

- Region 19 is in Kern County
- Farmers adjust water use per acre in response to reductions in available water and changing yields

Extensions

- Current SWAP Updates
 - Include more regions
 - Update existing region boundaries
 - Include finer crop groups
 - Update production cost data
- More Accurate Water and Yield Data
 - Remote sensing
- Interdisciplinary teamwork is key to accurate modeling

Conclusions

- SWAP is useful for evaluating extensive and intensive margin adjustments
- Under climate change:
 - Statewide acreage reductions average 20.5%
 - Statewide revenue reductions average 12.4%
 - Shift away from water intensive crops
 - Crop price increases partially offset production decreases
 - Effects would be dampened with water markets

Questions

Josue Medellin <u>imedellin@ucdavis.edu</u>

Duncan MacEwan dimacewan@ucdavis.edu

http://cee.engr.ucdavis.edu/CALVIN